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(Fig. 6e), where copper atoms become brighter, while 
carbon and nitrogen atoms remain dark. It can be 
seen that the corresponding pairs show a close image 
contrast at the positions of atoms for crystals below 
the critical thickness (about 56 A). 

7. Validity and advantages of the PWPOA 

Since the multislice method in image simulation is 
widely accepted and usually shows good agreement 
with the experimental results, it is reasonable to evalu- 
ate the limit of the validity of the PWPOA from the 
comparison of figures in Fig. 6. Obviously, PWPOA 
can be used to interpret the variation of the image 
contrast with the crystal thickness at the position of 
atoms for crystals below the critical thickness. 
Because in the PWPOA the Fresnel diffraction is 
taken into consideration while the multiple scattering 
is neglected, and because the PWPOA can be used 
for interpreting the image contrast at the positions of 
atoms but not on the background, we can say that 
below the critical crystal thickness the deviation of 
the image contrast from the pure kinematical treat- 
ment at the atom positions is mainly caused by the 
Fresnel diffraction from one slice to the next, while 
that of the background is by multiple scattering. 

Besides, the PWPOA indicates a possibility of 
revealing preferentially light or heavy atoms in the 
images for crystals consisting of atoms of different 
atomic number in the image by choosing different 
crystal thicknesses. This seems to have more practical 
meaning for ultra-high-voltage high-resolution elec- 

tron microscope observation, where the critical crystal 
thickness allows the crystal being examined to be 
thicker. 

The authors would like to express their gratitude 
to Professor H. Hashimoto of Osaka University for 
reading the manuscript and for beneficial discussions. 
Thanks are also due to his research group for the use 
of the multislice image simulation program. 
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Abstract 

Difference Patterson functions can be constructed for 
difference structures arising from superlattice or 
incommensurate transformations. In each case the 
difference structure may belong to one of several 
symmetry types, namely the irreducible representa- 
tions of the space group of the average structure, at 

0108-7673/85/040382-05501.50 

the relevant symmetry k vector in reciprocal space. 
The relationship between the symmetry of the differ- 
ence Patterson function and the irreducible rep- 
resentation is discussed. In particular it is shown that 
the difference Patterson function contains a 'character 
signature' of plus and minus signs, which, in the case 
of a one-dimensional irreducible representation, 
identifies that representation uniquely. Examples 
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relating to superlattices and incommensurate struc- 
tures are given, including the case of a higher- 
dimensional irreducible representation. 

1. Introduction 

It is often observed that diffracted intensity appears 
below the transformation temperature for a phase 
transition, at positions other than the Bragg reflec- 
tions for the high-temperature phase. In the simplest 
case this intensity appears at superlattice positions 
related to a simple doubling of the unit-cell 
dimensions. Additional intensity may also appear, in 
the case of an incommensurate transition, at points 
distant +qi from the Bragg positions, or the positions 
of absent superlattice reflections. 

The present paper is concemed with the informa- 
tion on symmetry change in such transformations that 
can be obtained from the direct Fourier transform of 
the additional diffracted intensity, i.e. from Patterson 
data. We make use of the fact that, in the early stages 
of transformation, it is frequently possible to use 
Landau theory (Landau & Lifshitz, 1968), which 
requires that the loss of symmetry related to the 
appearance of an ordering or displacement scheme 
is associated with some irreducible representation of 
the high-temperature space group ~ other than the 
identity representation. To be precise, we write the 
structure as 

(average structure) + (difference structure) (1) 

(Qurashi, 1963; Brhme, 1982), where the average 
structure is invariant under (g and the difference struc- 
ture has the symmetry of an irreducible representation 
F of ~. What we propose to demonstrate here is that 
there is a direct relationship between the relevant 
irreducible representation that appears at the transi- 
tion temperature and the difference Patterson func- 
tion that may be obtained by direct transformation 
of the additional intensity. It is not true that the 
difference Patterson has the symmetry of F, in fact it 
is usually invariant under the space group ~;  but 
nevertheless it carries within its pattern of positive 
and negative weight a 'signature' of the irreducible 
representation F. In fact, the vectors of the difference 
Patterson carry the group characters of F suitably 
renormalized. We will show that when f¢ is known 
the signature in the difference Patterson identifies the 
irreducible representation F. 

Thus the group-theoretical character labelling 
within the Patterson function we will refer to in future 
as the character signature. 

In the treatment that follows we deal first (§ 2) with 
the symmetry properties of the difference Patterson 
function for a very simple example. Here the differ- 
ence Patterson is not directly obtainable from experi- 
ment but can be constructed by inspection and will 
serve to illustrate what we mean by the signature. We 

will also provide arguments for its uniqueness. In § 3 
we consider a difference Patterson function obtained 
from intensity at superlattice points only. In this case 
data on the relevant irreducible representations of all 
space groups are contained in convenient form in 
Bradley & Cracknell (1972). The characteristics of 
the character signatures for two-dimensional irre- 
ducible representations are discussed next in § 4. 
Finally, in § 5 we address the important problem of 
the symmetry data available in the Patterson functions 
for an incommensurate phase. At this point we utilize 
the concept of component structures in the incom- 
mensurate phase, and the use of plus and minus 
difference Patterson functions (McConnell & Heine, 
1984) in the way already applied to the structure of 
nepheline (McConnell, 1985). 

2. The symmetry properties and character signature in 
the difference Patterson function 

We will illustrate in the simplest possible way the 
relationship between the irreducible representation F 
associated with the difference structure in (1), and 
the symmetry of the difference Patterson correspond- 
ing to it. Consider the symmorphic space group Pmm2 
with a set of four general equivalent positions as 
shown in Fig. l (a) .  We will assume the difference 
structure to consist of some ordering process on these 
sites, with positive and negative weight signifying a 
probability greater or less than average of having 
some atomic species at the site concerned. Let us 
ignore what may go on in other cells so that our set 
of four sites has point-group symmetry mm2 and 
generates the Patterson function with the set of nine 
vectors shown in Fig. l(b). 

The possible ordering patterns of the group mm2 
are four, with characters listed in Table 1. The corre- 
sponding ordering difference structures are shown in 
Figs. l(c) to (f)  and their difference Patterson func- 
tions in Figs. l (g)  to (j). We note that each difference 
Patterson has overall the full point-group symmetry 
mm2. However,'they are all four different, and since 
we are dealing with general equivalent positions the 
set of  nine vectors with the signs of  their weights iden- 
tities the irreducible representation uniquely. It is in 
fact the pattern of signs (and weights) that constitutes 
what we define as the character signature of the 
irreducible representation. 

We can see how the uniqueness relation between 
signature and irreducible representation arises. In the 
difference Patterson each vector arises from one or 
more pairs of sites connected by a single symmetry 
element of the group mm2 as shown in Fig. l(k).  
Thus the sign of the weight at a Patterson vector is 
the same as the sign of the corresponding symmetry 
element in the irreducible representation, and the 
characters of the representation can be written down 
by comparing the weights in the difference Patterson 
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in Figs. l (g)  to (j) with the elements shown in Fig. 
l(k).  These in turn specify the irreducible representa- 
tion uniquely. We believe this proof of the uniqueness 
between signature and irreducible representation can 
be applied to any case of one-dimensional representa- 
tions where only characters +1 appear. A second 
argument of the uniqueness can be obtained as fol- 
lows. In any one-dimensional representation with 
characters +1, the elements with character +1 form 
a subgroup in one to one correspondence with the 
irreducible representation. The subgroup in general 
is a space group and it is known that the Patterson 
function may be used to identify the space group 
uniquely apart from a certain limited number of cases 
listed by Buerger (1959, Table 2, p. 213). We have no 
general proof of the uniqueness relation. However, 
we have found that the two arguments we have given, 
particularly the first, suffice to establish the unique- 
ness in all the cases we have considered. The situation 
with two- and three-dimensional irreducible rep- 
resentations is more complicated, as we shall discuss 
in §4. 

0 I 0 mx 

(a) (b) 

Ri R2 R3 R4 

oi • oio oi o olo 
® ® ® ~ ® ® 0 ® 

(c) (d) (e) (f) 

Table 1. Character table of  the point group mm2 

E mx  2~ my  

R l 1 1 1 1 
R 2 1 - 1  1 - 1  
R 3 1 - 1  - 1  1 
R4 1 l - 1  - 1  

So far we have considered difference structures 
for ordering transformations but the same general 
considerations can also be applied to displacive 
transformations. 

3. Character signature in the difference Patterson 
function for a simple superlattice 

We turn now to consider a realistic simple example, 
namely a transformation and difference structure with 
a twofold superlattice (Fig. 2). We again use the space 
group Prom2, and doubling along the b axis. The 
difference structure must transform according to an 
irreducible representation of the 'group of q' where 
q is the Bloch wave vector -~h*. This group and its 
irreducible representations may be looked up in 
Bradley & Cracknell (1972). They (the irreducible 
representations) are a bit more complicated than in 
§ 1 because we are dealing with a space group and 
the translation h has to be represented by taking the 
negative since q = ½b*. However, there are again four 
one-dimensional irreducible representations R1 to R4, 
which relate to those in Table 1 as regards the charac- 
ters of the four elements listed. Fig. 2(b) shows a 
particular difference structure with symmetry R2. The 
full difference Patterson function is shown in Fig. 2 

(g) (h) 

O.i 0.2 O.i 
(i) (j) 

o:; o.': 
('k) 

Fig. 1. Difference structures associated with possible ordering 
schemes in the point group m m 2  of Table 1. The general 
equivalent positions and their vectors are shown in (a) and (b). 
(c), (d), (e) and (f)  label the general equivalent positions in 
accordance with the representations R1, R2, R3 and R4, respec- 
tively. The corresponding difference Patterson functions are 
shown in (g), (h), (i) and (j) with correct weightings. Finally, 
in (k) the vectors associated with the symmetry elements are 
labelled. 

r 
< b ~" 

® 

® 
(a) 

® 0 

® ® 

(b) 

o t: o o t i  o O-z O-z O+z 4 0+2 

O,l  -z O+i O-i O-I 
(c) 

Fig. 2. The effect of doubling the b axis of the unit cell and selecting 
the representation R2 for the point group r a m 2  from Table 1. 
(a) corresponds to the average structure, (b) to the difference 
structure and (c) to the complete difference Patterson function. 
The origin is the point with weight +4. 
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and we can pick out the part formed from vectors 
connecting the four atomic sites near the origin in 
one cell. Comparison with Fig. 1 therefore immedi- 
ately establishes the correct irreducible representation 
from the difference Patterson. 

Table 2. Character table o f  the point group 4 

E c-~ cz c ;  
R I 1 1 1 1 
R2 1 - 1  1 - 1  
R 3 2 0 - 2  0 

4. Character signatures in the Patterson functions for 
a two-dimensional irreducible representation 

Two-dimensional irreducible representations occur 
in at least three cases of importance for phase transi- 
tions. The first of these relates to the presence of a 
screw axis or glide plane, which requires that certain 
irreducible representations at the Brillouin zone 
boundary are at least doubly degenerate. The second 
case arises when threefold, fourfold or sixfold axes 
give higher two- and three-dimensional irreducible 
representations. The third case, which will be dis- 
cussed separately in § 5, refers to simple incom- 
mensurate structures based on the pair of vectors +Q, 
that necessarily define an irreducible representation 
that is at least two-dimensional (McConnell & Heine, 
1984). I ] o 

e e 
o 

e ® 
(a) 

O_i 

O_f O_1 
O 2 O_2 

' O-2 O_ I O2 
)4 4 

0_ 2 0_, 02 
J 02 0-2 

O_ O_ 
(b) 

O_l 

O° I 0-2 
0-2 e O° 

O° O_2q O° 0-2 

(c) 

Fig. 3. Patterson functions associated with two chosen basis func- 
tions for R3 of point group 4 (Table 2). The two chosen basis 
functions are illustrated in (a). Their Pattersons are shown in 
(b). Note that they lack fourfold symmetry. Finally, the sum of 
the Pattersons in (b) is shown in (c). Here the Patterson possesses 
full fourfold symmetry. 

In order to illustrate the Patterson properties of a 
very simple two-dimensional irreducible representa- 
tion, we choose the point group 4 and consider the 
two-dimensional representation R3 of Table 2. In Fig. 
3(a) we choose two suitable basis functions while 
hastening to add that the pair may be chosen in many 
different ways. (We also assume that the four sites in 
Fig. 3 are involved in an ordering transformation.) 

In practice both basis functions (or any linear com- 
bination) are equally likely, and in Fig. 3(b) we show 
the corresponding Patterson functions exhibiting 
appropriate character signatures. We note that, unlike 
the Patterson functions for one-dimensional irre- 
ducible representations, they do not individually have 
overall fourfold symmetry. Nor are they orthogonal 
as were the original basis functions. 

In practice the transformation proceeds via a par- 
ticular basis function determined by higher-order 
terms in the Landau expansion of the free energy, i.e. 
by some particular linear combination of the two 
functions of Fig. 3(a). Another example would be 
displacement in the a+  b direction rather than the a 
or b direction in a displacive transformation. Even 
then there remains a twofold degeneracy analogous 
to displacements in the a+ b and a - h  directions. If 
the transformed crystal is a single domain, one would 
observe some difference Patterson such as one of 
those in Fig. 3(b), which identifies uniquely not only 
the R3 representation but also the particular basis 
function. However, in other eases the material may 
consist of random domains of the two structures, say 
those of Fig. 3(a), and the scattering intensity is then 
the average of the two intensities for the two struc- 
tures. The observed difference Patterson would then 
be the average of those for the two structures as shown 
in Fig. 3(c), We note this now has overall fourfold 
symmetry. Moreover, it is easy to show by an 
orthogonal transformation that such a sum of two 
difference Pattersons is invariant under the choice of 
basis functions. Thus, in a multi-domain situation the 
observed difference Patterson function still identifies 
uniquely the R 3 irreducible representation, but no 
longer gives any information about the individual 
basis functions, i.e. particular difference structures in 
the domains. 

5. Character signatures in the difference Patterson 
functions for incommensurate phases 

In a recent paper we pointed out that the full space- 
group irreducible representation for an incom- 
mensurate structure with scattering at +Qi was of 
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necessity at least two-dimensional (McConnell & 
Heine, 1984). Two-dimensionality results in two pure 
component structures C1, C2 such that 

(Incommensurate structure) 

= (average structure) 

+ C1 cos Qi. r+  C2 sin Q~. r, (2) 

where Q~ is measured from the nearest symmetry 
position in reciprocal space (reciprocal-lattice point 
or half reciprocal-lattice point). The components C~, 
C2 are periodic in the lattice (or twofold superlattice), 
and transform according to a matched pair of irre- 
ducible representations (in the sense defined by 
McConnell & Heine, 1984) at the relevant symmetry 
point in reciprocal space. An alternative superspace 
group description, and its relationship to the normal 
space-group approach, is given by Janssen & Janner 
(1984). 

We now ask whether or not it is possible from 
Patterson criteria to establish the individual sym- 
metries of the components C~ and C2. The two- 
dimensionality inherent in a pair C,, C_~ is reflected 

°1° ® 0 

(a) 

")-i ?_2 O-i 
0+i (~-a 0+i 

0+, 
tl (~)+I y.i-2 ., 
~ ' ' -  I ~ - s - 2  ~ ' '  - I 

(b) 
Fig. 4. The character signatures in the plus difference Patterson 

function for an incommensurate phase based on the high- 
temperature space group Prom2, and modulated with wave vec- 
tor Qi in the b* direction. Component structures C~ and C2 in 
the modulation have symmetry defined by representations R 2 
and R 3 of the point group ram2. (a) Component structures C~ 
and C2 in the modulation parallel to b, and separated by ;~/4 
(phase ~-/2). (b) The plus difference Patterson function for the 
modulation. This is simply the sum of the Patterson functions 
for C1 and C2. Note that the full symmetry of C t or (?2 can be 
determined from the Patterson function since the symmetry acts 
on a different suite of general equivalent positions in Ct and (?2. 

in independent scattering intensities at the satellites 
with +Qi and -Qi ,  from which one can construct the 
plus difference Patterson function using the sum of 
the two intensities and the minus difference Patterson 
function using their difference. As discussed by 
McConnell & Heine (1984), the plus difference Patter- 
son function is simply the sum of the Pattersons of 
C1 and (?2, so that one expects to see in it the two 
separate signatures relating to the irreducible rep- 
resentations applying to C1 and (?2. This is shown in 
Fig. 4 for a modulation in the b direction based on 
component structures C1, (?2 with symmetries R2 and 
R 3 of the space group Prom2. Fig. 4(a) illustrates 
component structures C1, (?2 with orderings of sym- 
metry R2, R3 on different equivalent positions in the 
unit cell of the high-temperature structure. Com- 
parison of the plus difference Patterson function in 
Fig. 4(b) with Figs. l (h)  and (i) shows the two expec- 
ted separate signatures. In some cases the components 
C~, C2 relate to different orderings on the s a m e  suite 
of sites: it is left as an exercise for the reader to verify 
that certain vectors have zero weight in the plus 
difference Patterson function as in Fig. 3(c), but that 
one can still distinguish between the two possible 
matched symmetry pairs R2, R3 and R1, R4, which 
are the only combinations allowed by the symmetry 
relation of McConnell & Heine (1984). 

The plus difference Patterson function has been 
applied to elucidate the structure of nepheline, in 
particular the ordering symmetry of the K ÷ ions with 
respect to that of the 0 2- ions (McConnell, 1985). 

Finally it is possible to construct the minus differ- 
ence Patterson function (not shown) for the modula- 
tion of Fig. 4, which contains only cross vectors 
between the structures C~ and C2. It is more compli- 
cated and less useful from a symmetry point of 
view. 
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